
1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MONTH 20XX 1

Dynamic Facet Ordering for Faceted Product
Search Engines

Damir Vandic, Steven Aanen, Flavius Frasincar, and Uzay Kaymak

Abstract—Faceted browsing is widely used in Web shops and product comparison sites. In these cases, a fixed ordered list of
facets is often employed. This approach suffers from two main issues. First, one needs to invest a significant amount of time to
devise an effective list. Second, with a fixed list of facets it can happen that a facet becomes useless if all products that match the
query are associated to that particular facet. In this work, we present a framework for dynamic facet ordering in e-commerce.
Based on measures for specificity and dispersion of facet values, the fully automated algorithm ranks those properties and facets
on top that lead to a quick drill-down for any possible target product. In contrast to existing solutions, the framework addresses
e-commerce specific aspects, such as the possibility of multiple clicks, the grouping of facets by their corresponding properties,
and the abundance of numeric facets. In a large-scale simulation and user study, our approach was, in general, favorably compared
to a facet list created by domain experts, a greedy approach as baseline, and a state-of-the-art entropy-based solution.

Index Terms—Facet ordering, product search, user interfaces

F

1 INTRODUCTION

Studies from the past have shown that other factors
than the price play a role when a consumer decides to
choose where to buy a product online [1]. Therefore,
online retailers pay special attention to the usability
and efficiency of their Web shop user interfaces. Nowa-
days, many Web shops make use of the so-called faceted
navigation user interface [2], which is in literature also
sometimes referred to as ‘faceted search’ [3]. Facets are
used by some users as a search tool, while others use
it as a navigation and/or browsing tool [4], [5]. One of
the reasons why faceted search is popular among Web
shops is that users find it intuitive [6], [7]. The term
‘facet’ has a rather ambiguous interpretation, as there
are different types of facets. In this work, we refer to
facets as the combination of a property and its value,
such as WiFi:true or Lowest price (e):64.00.
Furthermore, facets are usually grouped by their
property in user interfaces, in order to prevent them
from being scattered around, and, thereby, confusing
the user. In other words, the facet properties, such as
Color, are shown first, and each property presents the
actual values (e.g., Red, Green, and Blue). Figure 1
shows an example of a faceted search user interface,
where the same concepts apply (e.g., the ‘Featured
Brands’ property with its values ‘Samsung’, ‘Motorola’,
‘Nokia’, etc.).

Faceted search is primarily helpful in situations

• Damir Vandic and Flavius Frasincar are with the Erasmus School of
Economics, Erasmus University Rotterdam, P.O. Box 1738, NL-3000
DR Rotterdam, the Netherlands. Email: {vandic,frasincar}@ese.eur.nl

• Steven Aanen is the co-founder of Grible.co, Coolsingel 104, NL-3011
AG Rotterdam, the Netherlands. E-mail: aanen@grible.co

• Uzay Kaymak is with the Information Systems IE&IS, Eindhoven
University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, the
Netherlands. Email: u.kaymak@tue.nl

where the exact required result is not known in
advance. As opposed to product search using keyword-
based queries, facets enable the user to progressively
narrow down the search results in a number of steps
by choosing from a list of query refinements. However,
one of the difficulties with faceted search, especially
in e-commerce, is that a large number of facets are
available. Displaying all facets may be a solution
when a small number of facets is involved, but it
can overwhelm the user for larger sets of facets [9].

Currently, most commercial applications that use
faceted search have a manual, ‘expert-based’ selection
procedure for facets [10], [11], or a relatively static
facet list [8]. However, selecting and ordering facets
manually requires a significant amount of manual ef-
fort. Furthermore, faceted search allows for interactive
query refinement, in which the importance of specific
facets and properties may change during the search
session. Therefore, it is likely that a predefined list of
facets might not be optimal in terms of the number of
clicks needed to find the desired product.

In order to deal with this problem, we propose an
approach for dynamic facet ordering in the e-commerce
domain. The focus of our approach is to handle
domains with sufficient amount of complexity in terms
of product attributes and values. Consumer electronics
(in this work ‘mobile phones’) is one good example of
such a domain. As part of our solution, we devise an
algorithm that ranks properties by their importance
and also sorts the values within each property. For
property ordering, we identify specific properties
whose facets match many products (i.e., with a high
impurity). The proposed approach is based on a facet
impurity measure, regarding qualitative facets in a
similar way as classes, and on a measure of dispersion
for numeric facets. The property values are ordered

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MONTH 20XX

Fig. 1. A screenshot of Amazon.com [8], showing a typical faceted search user interface in e-commerce.

descending on the number of corresponding products.
Furthermore, a weighting scheme is introduced in
order to favor facets that match many products over
the ones that match only a few products, taking into
account the importance of facets. Similar to existing
recommender system approaches [12], our solution
aims to learn the user interests based on the user
interaction with the search engine.

2 RELATED WORK

We can find approaches in the literature that focus on
personalized faceted search [13], [14], [15]. However,
we do not discuses these, as, unlike our approach, they
require some sort of explicit user ratings. Therefore,
we only consider related work that does not require
any explicit user input other than the query.

The faceted search system proposed in [16] focuses
on both textual and structured content. Given a
keyword query, the proposed system aims to find the
interesting attributes, which is based on how surprising
the aggregated value is, given the expectation. The
main contribution of this work is the navigational
expectation, which is, according to the authors, a novel

interestingness measure achieved through judicious
application of p-values. This method is likely not
to be suitable for the domain of e-commerce, where
also small data sets occur and statistically deriving
interesting attributes is not possible.

In [17], a framework for general-domain facet se-
lection is proposed, with the aim to maximize the
rank promotion of desired documents. There are many
aspects in the proposed approach that make it not
applicable in an e-commerce environment. First, two
main assumptions are made: (1) the search process
is initiated using a keyword-based query, and (2) the
result is a ranked list of documents. These are serious
limitations, as many Web shop users start with a
facet selection instead of a keyword-based search, and
product ranking is often not supported. Therefore,
the framework we propose does not use these two
assumptions. Second, the proposed solution does not
consider multiple iterations of the search process (i.e.,
multiple drill-downs). Third, the authors do not dif-
ferentiate between facet types. Consequently, numeric
facets are treated in the same way as qualitative facets
(discussed in Section 3), thereby losing their ordinal

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

L. J. NEDERSTIGT ET AL.: DYNAMIC FACET ORDERING FOR FACETED PRODUCT SEARCH ENGINES 3

nature. Fourth, the authors assume that a user can only
perform a drill-down using only conjunctive semantics.
In our study, we use the common disjunctive semantics
for values and conjunctive semantics for properties
and take into account the possibility of drill-ups. This
means that result set sizes are expected to both increase
and decrease during the search session, either by
deselecting a facet or choosing an addition facet in
a property (e.g., selecting ‘Samsung’ when ‘Apple’
is already selected). Fifth and last, the authors do
not distinguish in their approach between values
(e.g., Samsung) and properties (e.g., Brand), instead,
they only consider the combination of values and
properties.

In [18] the approach of [17] was extended and
improved with a focus on product search. Using
additional user assumptions and the same theoretic
approach as [17], two new methods for facet sorting
were developed. Even though this approach improves
upon the original algorithm, it still suffers from the
same issues discussed above.

A more recent approach provides another method
for facet selection [19], or ‘dynamic categorization’ as
the authors refer to it. The selection process is based
on ontological data from a Semantic Web environment.
However, due to a limited usage of rich ontological
relationships, the algorithms can also be applied to
semi-structured data, as also suggested in the paper.
The study is an extension of earlier work of the
authors, which was based on the idea of selecting more
descriptive facets using an entropy-based measure [20].
Similar to [17], [18], this approach does not consider
numeric facets and the use of disjunctive semantics
for values.

Summarizing, most of the related approaches that
have been proposed, with the exception of [18], do not
explicitly focus on the e-commerce domain [19], [14],
[17]. Furthermore, these solutions often assume that
there is a ranking of the results, based on a preceding
keyword-based query or external data, which is often
not the case for e-commerce. Also, our approach ranks
properties and facets, unlike existing algorithms [14],
[17], [18], [19], which filter (or select) properties and
facets. Last, none of the approaches from the literature
that we discussed emphasize the performance aspect
of the proposed algorithms. However, in order to be
useful in practice, for most Web shops, it is important
that the proposed solutions are responsive.

3 FACET OPTIMIZATION ALGORITHM

Before discussing the details of our approach, we
need to elaborate on the assumptions and the used
terminology. From the perspective of user interface
design, we distinguish between two main facet types:
qualitative facets (e.g., WiFi:true) and numeric facets
(e.g., Lowest price (e):64.00). We further distin-
guish between two types of qualitative facets: nominal

facets and Boolean facets. Nominal facets are, for ex-
ample, those for the property Display Type, and
can have any nominal value. Boolean facets are for
instance Multitouch, and have only three options
from an interface perspective: true, false, or No
preference.

Unlike previous studies, as discussed in Section 2,
our approach treats numeric facets differently than
qualitative facets. When creating facets from source
data (e.g., tabular data), every unique property-value
combination is converted into a facet. For numeric
facets, the same process is applied. However, numeric
values can be widely dispersed, especially in large data
sets. For facets, however, that would lead to a list of
possibly hundreds of different values. One way to deal
with that is to create predefined, fixed ranges of values
and use these as facets. However, it is never certain
whether the predefined ranges will match the user’s
preferences. Furthermore, fixed ranges can become
useless when a result set has only products that fall
into one predefined range. For our approach, we have
chosen to let the user define custom ranges of values
to select. In a product search engine, such custom
ranges can be represented using a slider widget. From
a technical point of view, however, these custom ranges
are considered as selecting a set of facets in one click,
i.e., each numeric value is still represented as a separate
facet.

The approach we propose aims to order properties
and facets in such a way that any individual product
could be found quickly and effectively. We put the
leading emphasis on property ordering, as we expect
that it has the largest impact on the user effort. A
straightforward way to order properties would be
by presenting those properties on top that feature
equal-sized facet counts for the facets of that property,
which is an effect that is for instance visible in the
entropy-based approach of [18]. However, this would
still require many clicks in total, possibly leading
to long search times. Our approach aims to rank
more specific properties higher. The reason behind
is that we believe that users are to a limited extent,
and possibly unconsciously, aware that selecting more
unique features of the target product will result in
a faster drill-down. Even in situations where this is
not true, ranking more specific properties higher will
increase the chance that the user will use specific
facets for drill-down, resulting in a shorter search
session duration. As an example consider a user
who is searching for a Nokia smartphone capable
of playing his collection of MP3 music, and both
features are equally important. We expect the user
to start by selecting Brand:Nokia instead of Audio
Formats:MP3. The user may be aware of the fact
that most smartphones are capable of playing MP3
audio, thus selecting that facet will not lead to a
quick drill-down. Filtering only Nokia phones will
presumably have a much larger impact on the result set

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MONTH 20XX

than filtering phones that support MP3. The effect of
ranking the individual facets (i.e., Nokia vs. Samsung)
is assumed to be limited. We expect that popularity is
a more suited metric that can be used for this purpose.

When the user selects facets from a more specific
property, the result set will decrease in size quickly.
Since the most specific facets only apply to few
products, it would be ineffective to present those on
top, as the target product is unknown to the system.
Given that we assume that ordering properties has
more effect than ordering facets, we therefore compute
the impurity of properties as a whole, based on the
specificity of its facets. Combined with weighting
for the number of products on which it applies, this
method will give us those properties and facets on top,
that will most likely lead to the quickest drill-down
for most of the possible target products. At the same
time, the weighting that we introduce lowers the rank
of properties with many missing values in the data,
as those cannot be employed for drill-down.

3.1 Search Sessions

A query in a search session is defined as a collection
of previously selected facets. We have decided to
apply disjunctive semantics to a selection of facets
within a property. For facets across different prop-
erties, we use a conjunctive semantics. For example,
selecting the facets Brand:Samsung, Brand:Apple,
and Color:Black results in (Brand:Samsung
OR Brand:Apple) AND Color:Black. Several e-
commerce stores on the Web (e.g., Amazon.com and
BestBuy.com) use the same principle, which, from a
user experience point-of-view, is very intuitive.

Our approach assumes that users can undertake
two types of actions: drill-down and roll-up. A drill-
down is defined as an action of selecting one or more
facets, leading to a reduction of the result set size.
A roll-up action increases the result set size, which
is likely to happen when the user notices that the
selected facets are too strict. A roll-up action can be
achieved in three ways: (1) selecting a qualitative facet
from a property for which a selection already exists
(e.g., adding Brand:Samsung to a query containing
Brand:Apple), (2) deselecting the only selected facet
of a property, and (3) broadening a numeric range.
From this point on, we use the notations described in
Table 1, which will be described in further details in
the next few sections.

Figure 2 summarize the complete search session
flow assumed in our approach. Throughout the search
session, we assume that there exists a single target
product du that the user wants to find, and that the user
will eventually be able to find it. Although the user
may not know the name of the product, (s)he will be
able to identify it by means of the characteristics of the
product (Fdu). The process starts with a complete result
set containing all products from the catalog D and an

empty user query q. Our approach then initiates two
processes, i.e., (1) computing the property scores and
(2) computing the facet scores, discussed in Section 3.2
and 3.3, respectively. When the system completes, the
user view is updated showing the properties and facets
in the computed order.

In the next step, the user evaluates the result set
size. If the result set size is too large to scan manually
(|Dq| > n), the user will continue to drill-down.
Otherwise, the user will scan the result set and check
if the target product is found. If the target product is
found, the search session is completed and considered
successful. The user will perform a roll-up in the case
that the desired product was not found, which will
increase the result set size and the same process repeats
again.

3.2 Computing Property Scores
We now discuss the details of computing property
scores, shown as one of the first two processes in
Figure 2. The outcome of the property scores is used
to first sort the properties, after which the facet scores,
discussed in the next section, are used to sort the
values within each property. In Figure 3, we zoom into
the main steps of computing the property score. As
shown by the diagram, the score for each property is
computed separately and can thus be done in parallel.

[full result set shown, empty query]

Compute
property scores

Compute
facet scores

Present ordered
properties and facets

[result set small enough,
user scans products]

[result size too large
user performs drill-down]

Update result
set using query

[user finds target product]

[product not found, user performs roll-up]

Fig. 2. Activity diagram describing the main flow of a
search session.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

L. J. NEDERSTIGT ET AL.: DYNAMIC FACET ORDERING FOR FACETED PRODUCT SEARCH ENGINES 5

D Set of products (product catalog)
P Set of properties
F Set of facets
Fp ⊆ F, (p ∈ P) Set of facets for property p
Fd ⊆ F, (d ∈ D) Set of facets for product d
q ⊆ F Query
Dq ⊆ D Result set returned for query q
Df , (∀d ∈ Df : f ∈ Fd) Set of products associated to facet f
rOq (f), (f ∈ Fp) Rank of facet f for facet ordering scheme O in the result set (dependent

on query q)
rOq (p), (p ∈ P) Rank of property p for facet ordering scheme O in the result set

(dependent on query q)
du ∈ D Target product for user u
X Variable indicating user effort
M Selected drill-down model in user simulation
n Maximum number of products in the result set the user is willing to

scan in the user simulation
t Iteration indicator (state) of search session

TABLE 1
Summary of notations.

3.2.1 Disjoint Facet Counts
We designed the proposed algorithm in such a way that
more specific facets and properties are ranked higher.
To support the algorithm in identifying more specific
facets, we introduce the disjoint facet count. This metric
is used to compute the score for qualitative properties.
The disjoint facet count is the number of products
from the result set matching each facet f of property
p. The classical facet count for a facet f , for a given
query q, is defined as:

count(f, q) = |Dq ∩Df | =
∑
d∈Dq

{
1 if f ∈ Fd

0 if f /∈ Fd

(1)

The disjoint facet count is then defined as:

disjointCount(f, q) =
∑
d∈Dq

{
1 if Fp ∩ Fd ≡ {f}
0 otherwise

(2)

where p is the property of facet f , f ∈ Fp, and {f}
is the singleton set containing f . More general facets
such as Audio Formats:MP3 will thus have a low
disjoint count, as most products that have this facet
also support other audio formats besides MP3. On the
other hand, facets from the property Brand are likely
to have relatively high counts, as most products are
associated to only one brand.

In Table 2 we show the tabular product data of a data
sample that was taken from our evaluation dataset
from [11]. The table also shows how the tabular data
has been transformed into facets and the corresponding
final scores.

3.2.2 Scoring Qualitative Properties
Figure 3 shows that qualitative properties are partly
treated differently compared to numeric properties. For
qualitative properties, we employ the Gini impurity [21]
to assess their ‘uniqueness’ or specificity in terms

Compute disjoint
facet counts

Compute Gini
coefficient

Sort on property
score

[qualitative property] [numeric property]

Compute Gini
impurity

[for the current result set, compute score for each property]

Product count
weighting

Fig. 3. Activity diagram showing the individual steps in
the property score computation process.

of describing certain products. We could have used
Shannon’s entropy [22] for the same goal. Various
studies have investigated this choice. In [23], the
authors find that these two methods produce tree splits
that are not significantly different from each other. One
of the few differences that tend to be present, is that
the Gini impurity tends to produce the most pure
nodes [24], which is why we chose to use it.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MONTH 20XX

Property

Product Name Audio Formats Brand Diagonal Screen Lowest Price
Size (inch) (e)

Nokia 6230i mp3 N/A 1.5 80.33
LG KU990 Viewty aac, midi, mp3, LG 3 79.00

mpeg 4, wav, wma
Sony Ericsson C902 aac, mp3 Sony Ericsson 2 129.95
LG KF510 aac, mp3 LG 2.2 N/A
Apple iPhone 4 aac, aac+, aax, aax+, Apple 3.5 459.95

aiff, mp3, wav
LG Nexus 4 8GB flac, mp3 LG 4.7 382.90
Samsung Galaxy S4 aac, ac3, amr-nb, eaac+, Samsung N/A 494.99

flac, mp3, ogg, wav, wma

TABLE 2
This example uses parameter values |D| = 7, |P | = 4, and q = ∅. The value ‘N/A’ stands for ‘not applicable’ (e.g.,
Gini coefficient is only computed for numeric properties). Looking at the final property scores (last column of Table
3), we can conclude that Brand is more important than Audio Formats and that the Lowest Price (e) is

more important than Diagonal Screen Size (inch).

Property & Facets Scores

Facet Disjoint Prod. Count Gini Gini Property
Property Facet Count Facet Count Weighting Coeff. Impurity Score

Audio
Formats

aac 5 0

1
7

N/A 0.00000 0.00000

aac+ 1 0
aax 1 0
aax+ 1 0
ac3 1 0
aiff 1 0
amr-nb 1 0
eaac+ 1 0
flac 2 0
midi 1 0
mp3 7 1
mpeg4 1 0
ogg 1 0
wav 3 0
wma 2 0

Brand

Apple 1 1
6
7

N/A 0.66667 0.57143LG 3 3
Samsung 1 1
Sony Erricson 1 1

Diagonal
Screen Size
(inch)

1.5 1 1

6
7

0.21006 N/A 0.18005

2.0 1 1
2.2 1 1
3.0 1 1
3.5 1 1
4.7 1 1

Lowest Price
(e)

79.00 1 1

6
7

0.35561 N/A 0.30481

80.33 1 1
129.95 1 1
382.90 1 1
459.95 1 1
494.99 1 1

TABLE 3
The computed scores for the considered properties.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

L. J. NEDERSTIGT ET AL.: DYNAMIC FACET ORDERING FOR FACETED PRODUCT SEARCH ENGINES 7

In the context of facet properties, we are looking
for those properties with the highest impurity. At that
point, it becomes desirable to initiate a new ‘split’, i.e.,
a facet selection, in order to reduce the impurity. We
define the Gini impurity for facet selection as follows:

giniImpurity(p, q) =

1−
∑
f∈Fp

(
disjointCount(f, q)∑

g∈Fp
disjointCount(g, q)

)2

(3)

where p ∈ Pqualitative and q ⊂ F , with the fraction
denominator being the total number of products from
the result set associated to a a single facet from
property p. It should be noted that since the relative
frequency of products is represented by the fraction
in Equation (3), the measure is independent of the
number of products associated to values by means of
property p.

3.2.3 Scoring Numeric Properties

In the previous section, we explained how the Gini
impurity can be employed to score qualitative proper-
ties. It would be possible to use the same methods for
numeric facets as well, similar to related work in which
numeric facets are treated as being qualitative [17], [19],
[18]. However, this would lead to a loss of information,
as each value would be treated as being a nominal.
We could for instance imagine a result set of products
in a similar price range. Regardless of the fact that the
prices are similar, there is a good probability that most
products will still have a unique value for price. In the
data we used for evaluation, over 90% of the products
has a unique price. However, when we disregard the
fact that ‘unique’ prices may actually be quite similar,
this would lead to a very high Gini impurity score.
With property Lowest Price (e) being used in our
example for drill-down, however, selecting a certain
range of prices would still include most of the products,
as their prices are similar. The property is thus not
effective for drill-down.

For numeric properties, we have chosen to use
the knowledge about the distribution of the numeric
values for computing property scores. It is fairly
straightforward to imagine that it may be useful to
drill-down using a numeric property when the values
for the result set are widely dispersed. When the facets
are nearly uniformly distributed over the complete
range of values, a drill-down using a user-defined
range would lead to a large reduction of the result
set. On the other hand, when most of the values are
similar, such as in the example of having a result set
with products of the same price range, drilling down
using a numeric property will hardly reduce the result
set size and thus be ineffective to use. For assessing
the dispersion of numeric facets, we employ the Gini
coefficient [25]. We adapt the original Gini index for

use in our context:

giniCoefficient(p, q) =

1

m

m+ 1− 2

m∑
i=1

(m+ 1− i)fi
m∑
i=1

fi

 (4)

=
2
∑m

i=1 ifi
m
∑m

i=1 fi
− m+ 1

m

given fi ∈ F ∗p for i = 1 to m

F ∗p = {fi | fi ∈ Fp ∩ Fd, d ∈ Dq, fi ≤ fi+1}
m = |F ∗p |
p ∈ Pquantitative

where F ∗p represents the values for numeric property
p for the products in the result set, indexed in non-
decreasing order (fi ≤ fi+1), with fi being the facet
ranked at index i.

In Table 3 we give the Gini coefficients for the
considered properties. As an example, we will now
compute the Gini coefficient for Diagonal Screen
Size (inch). We assume that the query is empty
and thus all 6 facets can be included in the computa-
tion. By ordering these facets in an ascending way, we
obtain F ∗p = {1.5, 2.0, 2.2, 3.0, 3.5, 4.7} and m = 6. The
index is then given by:

G =
2
∑m

i=1 ifi
m
∑m

i=1 fi
− m+ 1

m

=
2 · (1 · 1.5 + . . .+ 5 · 3.5 + 6 · 4.7)

6 · (1.5 + 2.0 + 2.2 + 3.0 + 3.5 + 4.7)
− 6 + 1

6

=
2 · (69.8)
6 · (16.9)

− 7

6

= 0.21006

which is the index that is also mentioned in Table 3.
From the table we can also conclude that the Gini
for Lowest Price (e) is higher, suggesting that
the values for that property are more dispersed than
those of Diagonal Screen Size (inch). Similar
to the Gini impurity for qualitative facets, the Gini
coefficient for properties is independent of the number
of products that have this property.

3.2.4 Product Count Weighting
With the Gini impurity and the Gini coefficient, we
now have metrics to score both qualitative and numeric
properties. As mentioned in the previous sections, this
score is independent from the number of products
on which it is based. This could possibly lead to
problems, as properties that occur within few products
will obtain a relatively high score. To compensate
for this, we introduce the product count weighting.
The product count weighting is used to normalize
the Gini indices, resulting in the final property score.
Additionally, it provides a way to cope with missing
values, as properties with many missing associations

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MONTH 20XX

will be ranked lower. We define the final property
score as:

propertyScore(p, q) =

gini(p, q) ·
∑
f∈Fp

disjointCount(f, q)

|Dq|
(5)

where gini is either the Gini impurity or the Gini
coefficient (depending on the property type). The term
with which gini is multiplied is the product count
weighting term. Table 3 shows the product count
weighting for each property. If we take for instance
property Lowest Price (e), we can compute the
property score using Equation 5 and the Gini from the
table as follows:

score = 0.35561 · 1 + 1 + 1 + 1 + 1 + 1

7

= 0.35561 · 6
7

= 0.30481

As we can see, the second term, the product count
weighting, is 6

7 , corresponding to the value in Table 3
for Lowest Price (e). Multiplying it by the Gini
score obtained earlier this gives us the property score,
by which we can rank properties using rOq (p), with O
referring to our approach in this case.

One should note that, strictly speaking, the Gini
impurity and the Gini coefficient are not directly
comparable to one another. For our use case, however,
this does not lead to problems, as both measure the
specificity of a property, one for qualitative and one for
quantitative. Another approach to handling qualitative
and quantitative properties would be to try to find
unified similarity measure. However, we believe that
it is difficult to compare qualitative and quantitative
properties in the first place and having two separate
lists of facets (one for qualitative properties and one
for quantitative properties) would make the browsing
of products more difficult for the end user. The
empirically obtained results suggest that this approach
is working adequately in practice.

3.3 Computing Facet Scores
In the previous sections, we have explained how we
compute scores for properties. We now discuss the
details of computing facet scores, shown as one of the
first two processes in Figure 2. However, our approach
also sorts the values within each property in order to
reduce the value scanning effort. This is in contrast
to for instance the approach in [19], which considers
property ranking but disregards facets ranking. For
numeric properties, value ordering is neglected, as
these are often represented with a slider widget in user
interfaces. The slider widgets, of which an example is
shown in Figure 5, give an indication of the minimum
and maximum values for a property, and allow the
user to freely define a range of facets within these

boundaries. For qualitative properties our approach
employs the facet count from Equation (1), ranking
facets descending on count, per property. As the target
product is unknown to the system, this will increase
the chance that a facet matching the target product is
placed on top.

In the evaluation, we compare our approach to
the one proposed in [19]. To have a fair comparison,
we have implemented a version of their method that
includes the same facet sorting as our algorithm, as
the authors themselves have neglected this aspect. The
difference in results can thus be completely accounted
to property sorting.

4 EVALUATION

In this section, we discuss the evaluation of our
proposed approach. The evaluation is based on (1)
simulated user sessions, where the simulation frame-
work is derived from previous literature and solid
theoretical foundations, and (2) a study involving real
users.

4.1 Experimental Framework
Figure 4 gives an overview of the concepts that
underlie the evaluation framework. In our experi-
mental setup, one simulation process represents an
individual search session, which we will refer to as
an experiment. Each experiment contains the selection
of one drill-down model, one ordering scheme, and
one target product. Furthermore, some of the drill-
down models and ordering schemes contain stochastic
aspects. Therefore each experiment is repeated 50 times,
in order to reduce the variability of results. For each
experiment we record six different metrics. For the
target products, we have decided to use every product
in our data set as a target product du, in order to get
the most reliable results from the data that we have
available.

4.1.1 Drill-Down Models
There are three drill-down models that we consider,
based on the ones proposed in [14], [17]. These drill-
down models rely on five key assumptions, i.e., (1)
rationality: the user will end the session once target
product is found, (2) practicality: the user will use no
more than a fixed number of clicks when looking for
the target product, (3) feasibility: the user will perform
a roll-up when the target product disappears from
the result set, (4) omnisciency: once presented with
the facets, the user knows which ones belong to the
target product, and (5) linearity: the user scans the
properties from top to bottom. Because some of these
assumptions are very restrictive, all drill-down models
relax one or more of these assumptions. It is, however,
useful to identify the theoretical boundaries that may
apply to user behavior in order to make a simulation
that is more realistic. In the Least Scanning Drill-Down

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

L. J. NEDERSTIGT ET AL.: DYNAMIC FACET ORDERING FOR FACETED PRODUCT SEARCH ENGINES 9

Drill-Down Model
Modeling user behavior
in the simulations:

Least Scanning

Best Facet

Combined

Ordering Scheme
Representing the system’s
approach for ranking facets:

Expert-Based

Greedy Count

Kim et al.

Our Approach

+

Target Product
The product to find for
each experiment:

Apple iPhone 4 16GB

LG Nexus 4 8GB

…

+

Repetitions
To reduce stochastic effects

each experiment is repeated:

50x

Performance Measures
User Effort:

Click Effort

Property Scan Effort

Value Scan Effort

Other measures:

Computation Time

Roll-Ups

% Successful Sessions

(794 products)

Fig. 4. Overview of the various concepts and phases underlying the evaluation framework. The 50 repetitions
are applied to all combinations that include the Combined Drill-Down Model, as this is the only stochastic drill-
down model. All considered performance measures are averaged over these 50 repetitions and the t-tests were
performed using the metrics for each target product as samples.

Fig. 5. Screenshot of the Web application that implements our approach. This application can be accessed at
http://facet-sorting.eur.dvic.io.

http://facet-sorting.eur.dvic.io

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MONTH 20XX

Model, MS , the user u scans the list of facets F starting
from the top. When u encounters a facet f ∈ Fdu (a
facet associated with the target product), (s)he will
select that facet without further scanning.

The Best Facet Drill-Down Model, MB , assumes that
when u is searching for du and is scanning F , u
identifies the single facet that will reduce the result set
size most, while du is still included in the result set. In
other words, the user will choose the ‘best’ drill-down
option, regardless of the property or facet rank. The
Best Facet Drill-Down Model minimizes the number of
clicks at the expense of possibly scanning more facets.
This is very useful for comparison with the results
from the Least Scanning Drill-Down Model.

Last, the Combined Drill-Down Model MC provides a
more realistic simulation of user behavior by allowing
faulty selections (i.e., clicks that will exclude the target
product from the result set). This model assumes that
the user u scans the list of facets F starting from the
top. When u encounters a facet f (s)he will consider
selecting f with probability αf when the target product
du is associated with this facet, and βf when it is not.
For αf and βf we use:

αf =
α

|Fp ∩ Fdu
|
, βf =

β

|Fp \ Fdu
|

(6)

where f ∈ Fp and α + β = 1. Once u has a certain
facet in consideration, the decision whether to select it
will be made stochastically using the Facet Importance
Factor γf , defined as follows:

γf =

{
1− rOq (f)−1

|Fdu\q |−1
if f ∈ Fdu

(α case)

1 if f 6∈ Fdu (β case)
(7)

where rOq (f) is a function that returns the rank of f
in a list of candidate facets Fdu

\ q (unselected facets
associated with du), and the fraction denominator
|Fdu \ q | − 1 is a normalization factor to bring the
measure between 0 and 1. When a facet is not selected
during a scan, either due to the stochastic effect from
αf or βf , or due to its Facet Importance Factor γf , the
user will resume scanning the following facet until a
selection has been made.

4.1.2 Ordering Schemes
For effectively evaluating the performance of our ap-
proach, we perform a comparison with other ordering
schemes. The Expert-Based scheme is the fixed-order
scheme from [11], which is created manually by a
team of dedicated editors. Since manually defined
schemes are used in nearly all current applications on
the Web, it provides a useful comparison with dynamic
ordering methods as the one proposed in this study.
The Kim et al. approach, proposed in [19], is a state-of-
the-art method for sorting properties. Their proposed
scheme fits the e-commerce domain well and because
it is an entropy-based approach, it is an interesting
candidate in the comparison. Although the original

paper suggested source data in the form of an ontology,
the algorithms can be applied to semi-structured data
as well, as the authors also suggest. The last baseline
we employ is the Greedy Count scheme. Greedy Count
appears regularly in related work as a simple baseline
for evaluation [14], [17]. It orders properties and facets
descending on the number of matching products. In
order to fit into our environment, the Greedy Count
uses the following definition for the property score:

greedyCountPropScore(p, q) =
maxf∈Fp count(f, q)

|Dq|
(8)

The properties are thus ordered based on the maxi-
mum of the facet counts of their values. The facets
themselves are naturally sorted on facet counts as
well, as defined in our approach and the one we
implemented for the Kim et al. approach. This means
that all automatic approaches that we evaluate use
the same facet ordering technique, which makes the
comparison more fair.

4.1.3 Performance Measures
The performance of the ordering schemes given the
different drill-down models is measured using various
metrics. We consider three user effort metrics. First,
the click effort Xc measures how often a facet was
(de)selected or a range was adapted. Second, the
property scan effort Xp measures how much effort is
put in scanning properties and is defined by:

Xp =
∑

t, |Dt
q|>n ∧ t≤ 100

rOq (p
M
t)

|P |
(9)

where n is the maximum number of products in the
result set the user is willing to scan, and pMt refers to
the property that is selected by the user given drill-
down model M at iteration t. Last, the value scan effort
Xf measures how much effort is put in scanning values
and is defined by:

Xf =
∑

t, |Dt
q|>n ∧ t≤ 100

rOq (f
M
t)

|Fp |
(10)

where fMt refers to the facet f ∈ Fp that is selected
by the user given drill-down model M at iteration t.
As there is no list of facets for quantitative properties,
the scanning effort for selecting a range of numerical
values is defined as Xf = 0.

Besides the user effort metrics, we record three other
measures during the experiments:
• Computation Time The computation time that

is given in the tables measures only the time
needed to compute or retrieve the order of facets,
thus the selection scheme. Since the computations
have been done using machines that are similar in
hardware setup, we can use the computation time
to compare among the various ordering schemes.
The time as given in the tables is the total time in

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

L. J. NEDERSTIGT ET AL.: DYNAMIC FACET ORDERING FOR FACETED PRODUCT SEARCH ENGINES 11

computation of the facet order for one complete
experiment, thus depending on the number of
states or clicks in the session.

• # Roll-Ups The number of roll-up user actions that
were needed on average in each search session.
This gives an indication of the ability of ordering
schemes to cope with errors introduced in the
query. Less roll-ups indicate a more efficient search
process. The only drill-down model that allows
for faulty selections is the Combined Drill-Down
Model, therefore roll-ups will only occur when
that model is used.

• % Successful Sessions Each experiment is lim-
ited to 100 query states (t ≤ 100) to prevent
infinite search sessions. The percentage indicates
the amount of experiments in which the target
document was found within 100 clicks.

For our experiments, we have gathered data from
Tweakers Pricewatch [11]. Tweakers PriceWatch is
the largest Dutch price comparison Web site, with
a comprehensive collection of product characteristics
available in tabular format. The complete catalog
contains 794 mobile phones, 53 properties, and 1,816
facets. Of these facets 348 are qualitative, against 1,468
numeric facets. The imported data was cleaned and
converted to a more structured format (i.e., we used a
custom, predefined schema). With 3 drill-down models,
4 ordering schemes, 794 mobile target products, and 50
repetitions for the Combined Drill-Down Model, we
have run over 150,000 experiments, storing over half
a terabyte of experimental data. We also implemented
our approach in a Web application, shown in Figure 5.
Running all these experiments on one computer is
unfeasible. Instead, we used a cluster of 100 instances,
hosted on Amazon Web Services [26], to run the
experiments. In the end, we stored half a gigabyte
of performance metrics for the different experiments.

4.2 Results using the simulated experiments
In this section we present and discuss the results
obtained from our experiments. We have performed
t-tests to assess whether the observed differences for
the click, property scan effort, and value scan effort
are significant. Based on these tests we can conclude
that all the found differences are significant, with the
largest p-value being 0.00026.

Tables 4, 5 , and 6 show the results for Least Scan-
ning, Best Facet, and Combined Drill-Down models,
respectively. We can make several important observa-
tions. First, in terms of the number of clicks, our ap-
proach seems to outperform the other methods, except
in the case of the Best Facet Drill-Down Model, where
each approach performs equally well. Furthermore,
for the Combined Drill-Down Model, our approach
results in the lowest number of roll-ups and the highest
percentage of successful sessions.

Second, we observe that our approach, in most cases,
performs best in terms of property and facet scan

effort, except for the Combined and Least Scanning
Drill-Down Model, respectively. However, although
the found differences are statistically significant, it can
be argued that they are not relevant, as there were no
large effect sizes found. Furthermore, we assume that
in practice the property and facet scanning efforts are
not the key factors that contribute to the true perceived
user effort. We assume that the number of clicks and
the responsiveness of the approaches play a much
more important role here.

Third and last, in terms of computational time, our
approach outperforms the other automatic approaches,
often needing orders of magnitude less time to return
the sorted facets for a query. For example, the total
computation time for the Kim et al. method, on average,
is more than 1 second per click. Our approach needs
approximately 100 milliseconds per click, which fits
the requirements of Web shops and other e-commerce
applications, where latencies in terms of seconds are
found to be highly undesired [27]. The reason for why
the method of Kim et al. is slower stems from the fact
that it relies on computing the the conditional entropy
for every property pair pi, pj (pi 6= pj), which in turn
relies on computing the entropy between the property
pi and all property values b ∈ Vj , where Vj are all the
values for property j.

We have also found that ranking specific facets
higher does sometimes have a downside. This occurs
when a facet is so specific that the user has difficulties
to identify it. For instance, the qualitative Screen
Resolution property is ranked relatively high ini-
tially. There are so many different screen resolutions
available that the user might be overwhelmed by
the decision to choose one. The users might also be
indifferent with respect to the different resolutions,
which makes the property less attractive. At the
same time, the property Lowest Price (e), which
is generally considered a more useful property for
filtering products, is ranked lower. This shows that
achieving faster drill-down does not only involve
mathematical optimization but also taking into account
user experience and behavior. Our method can be
extended by introducing weight parameters for each
facet score that positively or negatively influence the
final score in order to take into account these aspects.

4.3 Results using the experiment with real users
Besides the extensive experiments performed using
simulation, we also performed an experiment with
real users. The experiment consisted of 10 small tasks1,
where each task would take the user approximately
one minute to complete. The tasks were generated by
a script that randomly selects products and includes
all properties of the product in the task description.
However, for the sake of brevity, properties with
multiple values (e.g., ‘Audio Formats’) were reduced

1. https://db.tt/5DRnsIhS

https://db.tt/5DRnsIhS

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MONTH 20XX

Ordering Scheme

Expert-Based Greedy Count Kim et al. Our approach

user effort:

clicks (Xc) 4.0 28.2 19.7 2.3
clicks std dev 1.24 18.65 14.04 0.68
prop scan effort (Xp) 0.0538 0.1914 0.0630 0.0267
prop scan effort std dev 0.0273 0.0891 0.0351 0.0124
facet scan effort (Xf) 0.1462 0.2438 0.4550 0.2111
facet scan effort std dev 0.0908 0.0952 0.1516 0.1718

other measures:

computation time (ms) 4 23, 386 49, 818 187
computation time std dev 3.7 26, 832.4 45, 129.9 74.9
successful sessions (%) 100.00% 100.00% 100.00% 100.00%

TABLE 4
Results for the Least Scanning Drill-Down Model.

Ordering Scheme

Expert-Based Greedy Count Kim et al. Our approach

user effort:

clicks (Xc) 1.5 1.5 1.5 1.5
clicks std dev 0.52 0.52 0.52 0.52
prop scan effort (Xp) 0.3474 0.7232 0.5804 0.2399
prop scan effort std dev 0.2607 0.2091 0.1939 0.2257
facet scan effort (Xf) 0.4659 0.4796 0.4946 0.4547
facet scan effort std dev 0.2730 0.2736 0.2695 0.2764

other measures:

computation time (ms) 2 25 1, 507 160
computation time std dev 0.9 213.2 638.1 61.9
successful sessions (%) 100.00% 100.00% 100.00% 100.00%

TABLE 5
Results for the Best Facet Drill-Down Model

Ordering Scheme

Expert-Based Greedy Count Kim et al. Our approach

user effort:

clicks (Xc) 30.7 62.9 59.8 18.8
clicks std dev 20.05 27.98 20.01 9.77
prop scan effort (Xp) 0.1220 0.1681 0.1524 0.2268
prop scan effort std dev 0.0232 0.0255 0.0297 0.0261
facet scan effort (Xf) 0.3904 0.4842 0.5443 0.3075
facet scan effort std dev 0.0599 0.1100 0.0325 0.0308

other measures:

computation time (ms) 16 118, 155 113, 336 2, 843
computation time std dev 12.6 72, 772.1 53, 871.0 2, 094.0
rollups mean 10.7 10.0 16.6 6.2
successful sessions (%) 90.96% 64.00% 79.53% 99.07%

TABLE 6
Results for the Combined Drill-Down Model

to one (randomly selected) value. For each task, the
user was given a set of product features. The users
were instructed to find the product(s) that matched all
the given properties in each task. In the experiment,
we used two systems, where each user performed the
first half of the tasks with one system and the second

half of the tasks with the other system. The order of
the systems was alternated among users in order to
compensate for the the learning effect that may occur.
The first system is the Web shop implementation of the
algorithm proposed in this paper and has been made

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

L. J. NEDERSTIGT ET AL.: DYNAMIC FACET ORDERING FOR FACETED PRODUCT SEARCH ENGINES 13

Event type Standard approach Our approach

List facet select 364 376
Toggle collapsed 182 143
Numeric facet change 198 84
List facet deselect 18 2
Boolean facet change 5 2
Numeric facet remove 2 4
Boolean facet remove 4 0
Clear all filters 2 2
Change page number 2 3

TABLE 7
Event incidence by type for each used system in the

user experiment.

available online2 The second system was the ‘standard’
Web shop3, i.e., one that has no special features other
than those commonly encountered on the Web. It
employs a fixed facet list, which is obtained from the
Web shop from which the data set is originating [11].

We had a total of 27 users who participated in the
experiment, consisting of 17 males and 10 females.
There were 19 users that were between 20 and 30
years old, 6 users that were between 31 and 40 years
old, and 2 users that was between 40 and 50 years
old. These users were mostly students and colleagues
from our university and other universities and there
was no financial reimbursement for the participation
in the experiment.

Table 7 shows the behavior of the users who par-
ticipated in the experiment, for each of the systems.
We can see that most users chose to filter based on
the qualitative facets (such as the brand), as indicated
by the event ‘List facet select’. We notice that users
needed less numeric facet changes with our approach
than with the standard approach (event ‘Numeric facet
change’). The results from our user study also suggest
that users do not reformulate the query often. Table 7
shows that the filters were cleared only twice in the
whole study (event ‘Clear all filters’). We can also
see that the users spend more time drilling down or
rolling up (events ‘List facet select’ and ‘List facet
deselect’). Using a paired t-test (measured per task),
we can conclude that the users significantly had less
interaction (i.e., less events) with our approach than
with the standard approach (p = 0.001867). We also
considered the user effort in terms of how long it took
the users to complete the tasks. On average, the users
spent 72.4 seconds per task with our approach and
79.9 seconds with the standard approach. The standard
deviation is 33.2 seconds for our approach and 33.0
seconds for the standard approach. A paired t-test
shows that the difference is significant although the
evidence is not very strong (p = 0.047170). This might

2. http://facet-sorting.eur.dvic.io
3. http://std-prod-search.eur.dvic.io

be due to the fact that there is a large difference among
users and 27 users is too little to factor out that effect.

5 CONCLUSION

In this work, we proposed an approach that automati-
cally orders facets such that the user finds its desired
product with the least amount of effort. The main idea
of our solution is to sort properties based on their facets
and then, additionally, also sort the facets themselves.
We use different types of metrics to score qualitative
and numerical properties. For property ordering we
want to rank properties descending on their impurity,
promoting more selective facets that will lead to a quick
drill-down of the results. Furthermore, we employ a
weighting scheme based on the number of matching
products to adequately handle missing values and take
into account the property product coverage.

We evaluate our solution using an extensive set of
simulation experiments, comparing it to three other
approaches. While analyzing the user effort, especially
in terms of the number of clicks, we can conclude
that our approach gives a better performance than the
benchmark methods and in some cases even beats
the manually curated ‘Expert-Based’ approach. In
addition, the relatively low computational time makes
it suitable for use in real-world Web shops, making
our findings also relevant to industry. These results
are also confirmed by a user-based evaluation study
that we additionally performed.

In future we would like to replicate our study on a
different domain than cell phones, thereby addressing
one of the limitations of the current evaluation. Also
we would like to investigate the use of other metrics,
such as facet and product popularity, for determining
the order and optimal set of facets.

ACKNOWLEDGEMENT

Damir Vandic is supported by an NWO Mosaic schol-
arship for project 017.007.142: Semantic Web Enhanced
Product Search (SWEPS).

REFERENCES

[1] H. Zo and K. Ramamurthy, “Consumer Selection of E-
Commerce Websites in a B2C Environment: A Discrete Decision
Choice Model,” IEEE Transactions on Systems, Man and Cyber-
netics, Part A: Systems and Humans, vol. 39, no. 4, pp. 819–839,
2009.

[2] M. Hearst, “Design Recommendations for Hierarchical Faceted
Search Interfaces,” in 29th Annual International Conference on
Research & Development on Information Retrieval (ACM SIGIR
2006). ACM, 2006, pp. 1–5.

[3] D. Tunkelang, “Faceted Search,” Synthesis Lectures on Information
Concepts, Retrieval, and Services, vol. 1, no. 1, pp. 1–80, 2009.

[4] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst, “Faceted
Metadata for Image Search and Browsing,” in Proceedings of
the SIGCHI Conference on Human factors in Computing Systems.
ACM, 2003, pp. 401–408.

[5] J. C. Fagan, “Usability Studies of Faceted Browsing: A Litera-
ture Review,” Information Technology and Libraries, vol. 29, no. 2,
p. 58, 2010.

http://facet-sorting.eur.dvic.io
http://std-prod-search.eur.dvic.io

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2017.2652461, IEEE Transactions on Knowledge and Data Engineering

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MONTH 20XX

[6] M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen, and K.-
P. Yee, “Finding the Flow in Web Site Search,” Communications
of the ACM, vol. 45, no. 9, pp. 42–49, 2002.

[7] B. Kules, R. Capra, M. Banta, and T. Sierra, “What Do
Exploratory Searchers Look at in a Faceted Search Interface?”
in 9th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL
2009). ACM, 2009, pp. 313–322.

[8] Amazon.com, “Large US-based online retailer,” http://www.
amazon.com, 2014.

[9] V. Sinha and D. R. Karger, “Magnet: Supporting Navigation in
Semi-structured Data Environments,” in 24th ACM SIGMOD
International Conference on Management of Data (SIGMOD 2005).
ACM, 2005, pp. 97–106.

[10] Kieskeurig.nl, “Major Dutch price comparison engine with de-
tailed product descriptions,” http://www.kieskeurig.nl, 2014.

[11] Tweakers.net, “Dutch IT-community with a dedicated price
comparison department,” http://www.tweakers.net, 2014.

[12] Q. Liu, E. Chen, H. Xiong, C. H. Ding, and J. Chen, “En-
hancing Collaborative Filtering by User Interest Expansion via
Personalized Ranking,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 42, no. 1, pp. 218–233, 2012.

[13] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl,
“An Algorithmic Framework for Performing Collaborative
Filtering,” in 22nd Annual International Conference on Research
and Development in Information Retrieval (ACM SIGIR 1999).
ACM, 1999, pp. 230–237.

[14] J. Koren, Y. Zhang, and X. Liu, “Personalized Interactive
Faceted Search,” in 17th International Conference on World Wide
Web (WWW 2008). ACM, 2008, pp. 477–486.

[15] G. M. Sacco and Y. Tzitzikas, Dynamic Taxonomies and Faceted
Search. Springer, 2009, vol. 25.

[16] D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and G. Lohman,
“Dynamic Faceted Search for Discovery-Driven Analysis,” in
Proceedings of the 17th ACM Conference on Information and
Knowledge Management (CIKM 2008). ACM, 2008, pp. 3–12.

[17] S. Liberman and R. Lempel, “Approximately Optimal Facet
Value Selection,” Science of Computer Programming, vol. 94, pp.
18–31, 2014.

[18] D. Vandic, F. Frasincar, and U. Kaymak, “Facet Selection
Algorithms for Web Product Search,” in 22nd ACM International
Conference on Information and Knowledge Management (CIKM
2013). ACM, 2013, pp. 2327–2332.

[19] H.-J. Kim, Y. Zhu, W. Kim, and T. Sun, “Dynamic Faceted Nav-
igation in Decision Making using Semantic Web Technology,”
Decision Support Systems, vol. 61, pp. 59–68, 2014.

[20] Y. Zhu, D. Jeon, W. Kim, J. Hong, M. Lee, Z. Wen, and Y. Cai,
“The Dynamic Generation of Refining Categories in Ontology-
Based Search,” in Semantic Technology, ser. Lecture Notes in
Computer Science, 2013, vol. 7774, pp. 146–158.

[21] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,
Classification and Regression Trees. CRC press, 1984.

[22] C. E. Shannon, “A Mathematical Theory of Communication,”
ACM SIGMOBILE Mobile Computing and Communications Review,
vol. 5, no. 1, pp. 3–55, 2001.

[23] L. E. Raileanu and K. Stoffel, “Theoretical Comparison between
the Gini Index and Information Gain Criteria,” Annals of
Mathematics and Artificial Intelligence, vol. 41, no. 1, pp. 77–93,
2004.

[24] L. Breiman, “Technical Note: Some Properties of Splitting
Criteria,” Machine Learning, vol. 24, no. 1, pp. 41–47, 1996.

[25] L. Ceriani and P. Verme, “The Origins of the Gini Index: Extracts
from Variabilità e Mutabilità (1912) by Corrado Gini,” The
Journal of Economic Inequality, vol. 10, no. 3, pp. 421–443, 2012.

[26] AWS, “Amazon Web Services. Large cloud computing provider
from Amazon.com,” http://aws.amazon.com, 2014.

[27] F. F.-H. Nah, “A Study on Tolerable Waiting Time: How Long
Are Web Users Willing to Wait?” Behaviour & Information
Technology, vol. 23, no. 3, pp. 153–163, 2004.

Damir Vandic obtained cum laude the master
degree in Economics & Informatics from Eras-
mus University Rotterdam and is currently a
PhD candidate at the same university. The
focus of his research is on using Semantic
Web techniques to improve product search
and browsing on the Web and is funded by
an NWO Mosaic grant. His research interests
cover areas such as machine learning, the
Semantic Web foundations and applications,
knowledge systems, and Web information

systems. He is a member of the editorial board of Decision Support
Systems.

Steven Aanen has the master degree in Eco-
nomics & Informatics from Erasmus University
Rotterdam with a specialization in Computa-
tional Economics and Logistics. His research
focuses on improving product search on the
Web through the application of Semantic
Web technologies. Further research interests
include business intelligence, data mining and
decision support systems.

Flavius Frasincar obtained the master de-
gree in computer science from “Politehnica”
University Bucharest, Romania, in 1998. In
2000, he received the professional doctorate
degree in software engineering from Eind-
hoven University of Technology, the Nether-
lands. He got the PhD degree in computer
science from Eindhoven University of Technol-
ogy, the Netherlands, in 2005. Since 2005, he
is assistant professor in information systems
at Erasmus University Rotterdam, the Nether-

lands. He has published in numerous conferences and journals in the
areas of databases, Web information systems, personalization, and
the Semantic Web. He is a member of the editorial board of Decision
Support Systems and the International Journal of Web Engineering
and Technology.

Uzay Kaymak received the M.Sc. degree in
electrical engineering, the degree of char-
tered designer in information technology, and
the Ph.D. degree in control engineering from
the Delft University of Technology, Delft, the
Netherlands, in 1992, 1995, and 1998, respec-
tively. From 1997 to 2000, he was a reservoir
engineer with Shell International Exploration
and Production. Currently, he is full profes-
sor of information systems in health care at
the department of Industrial Engineering &

Innovation Sciences of the Eindhoven University of Technology, the
Netherlands. Prof. Kaymak is an associate editor of IEEE Transactions
on Fuzzy Systems and is a member of the editorial board of several
journals.

http://www.amazon.com
http://www.amazon.com
http://www.kieskeurig.nl
http://www.tweakers.net
http://aws.amazon.com

